REAKTION VON TRIS(TRIMETHYLSILYL)ALUMINIUM MIT lpha , eta - Ungesättigten carbonylverbindungen

G.Altnau und L.Rösch*

Institut für Anorganische und Analytische Chemie der Techn. Universität Berlin, Straße des 17. Juni, D-1000 Berlin 12 Gerhard Jas

Institut für Organische Chemie der Techn. Universität Berlin

SUMMARY

The 1,2- and 1,4-addition of tris(trimethylsilyl)aluminium to α ,/3-unsaturated carbonyl compounds is described.

In einer vorangegangenen Mitteilung $^{1)}$ war berichtet worden, daß die reduktive Silyl ierung von Carbonylverbindungen mit 1 problemlos gelingt. Ausgehend von Ergebnissen von Still $^{2)}$ und Fleming $^{3)}$ untersuchten wir nun, ob bei der Umsetzung mit α , β -ungesättigten Carbonylverbindungen eine gezielte 1,2- und/oder 1,4-Addition möglich ist. Besonders interessant wäre die 1,4-Addition, da sie einen bequemen Zugang zu β -Silylketonen ergeben würde, die als maskierte Enone wertvolle präparative Bausteine darstellen.

(1)
$$R = C = C = 0$$
 $R = C = C = 0$
 $R =$

Die in der Tabelle angegebenen Ergebnisse zeigen, daß die 1,2-Addition bei Raumtemperatur in Et $_2$ O glatt und mit guten Ausbeuten abläuft. Umsetzung bei $_{78}^{\circ}$ C ergibt die gewünschten 1,4-Additionsprodukte mit allerdings schlechten

Ausbeuten. Führt man die Reaktion hingegen in THF oder DME aus ergeben sich auch hier durchweg gute Ausbeuten.

(Reaktionszeit: 1 h, Enon/1 = 3/1 - 3/1,5) TABELLE

Enon	Ausbeute <u>a</u> (%)	Ausbeute <u>b</u> (%)
<u>2</u> : R= CH ₃ R≤ R″³ = H	-	· -
3: R= CH ₃ R= R"3= CH ₃	85	85
<u>4</u> : R= R"= H R ⁴ C ₆ H ₅	83	-
5: R≤ H R= R" = -(CH ₂) ₃ -	90	79
6: R= CH ₃ , R''= H R= SiMe ₃	91	-
<u>7</u> : HC≡C-CO-CH ₃	-	$^{\text{Me}_3\text{Si}} > \text{C=C} < ^{\text{H}}_{\text{CO-CH}_3} $ 72

Die Verbindungen 3b, 5b und <u>7b</u> sind aus der Literatur bekannt. Für 3-6a wurden folgende spektroskopischen Daten ermittelt:

3a: IR: 3560, 690, 620 MS: 172 (M⁺), 157, 139, 99, 82, 73, 67

NMR: quintett 5,14(1H) J=1, d 1,84(3H) J=1, d 1,71 (3H) J=1 s 1,30(3H), s 0,05(9H)

NMR: ddd 5,85(1H) J=10;5;2,5 m 2,13-1,55(6H), s 0,05(9H) dm 5,72(1H) J=10 6a: IR: 3550, 1600, 690, 660, 615 MS: 216(M⁺), 201, 143, 133, 113, 73

NMR: d 6,15(1H) J=19, d 5,59(1H) J=19, s 2,29(3H), s 0,06(9H), s 0,01(9H)

DANK

Unser Dank gilt Herrn Prof. F.Bohlmann, der diese Arbeit ermöglichte sowie der Deutschen Forschunggemeinschaft und dem Fond der chemischen Industrie, die uns finanziell unterstützten.

LITERATUR

- 1) L.Rösch, G.Altnau, W.H.Otto; Angew.Chem.Int.Ed. 20,581 (1981)
- 2) W.C.Still, J.Org.Chem. 41, $306\overline{3}$ (1976)
- 3) I.Fleming, D.J.Ager, Chem.Comm. 276 (1980) 4) 3b, 5b: J.Dunogues, A.Ekouya, R.Calas, N.Duffaut, J.Organomet.Chem. <u>87</u>, (1975) 151

A.G.Brook, J.M.Duff, Can.J.Chem. <u>51</u> (1973) 2024 7b:

(Received in Germany 13 August 1982)